A Truly-meshless Galerkin Method, through the Mlpg “mixed” Approach

نویسندگان

  • Zhidong Han
  • Satya N. Atluri
چکیده

A truly meshless Galerkin method is formulated in the present study, as a special case of the general Meshless Local Petrov-Galerkin (MLPG) “Mixed” approach. The Galerkin method is implemented as a truly meshless method, for solving elasto-static problems. In the present Galerkin method, the test function is chosen to be the same as the trial function, as a special case of the MLPG approach. However, the MLPG local weak form is written over a local sub-domain which is completely independent from the trial or test functions. Even though in the present Galerkin approach, the trial and test functions are the same, the present MLPG approach (wherein the support sizes of the nodal trial and test function domains, as well as the size of the local subdomain over which the local weak-form is considered, can be arbitrary) may lead to either symmetric or unsymmetric “stiffness” matrices. These matrices are sparse and are well-conditioned. The present MLPG Galerkin Mixed Method does not require any background meshes (or cells) for performing the numerical integration of the local weak-forms, and makes the present method to be truly meshless. In addition, the mixed approach is also used to interpolate the nodal values of strains independently from the nodal values of displacements. The present mixed approach eliminates the expensive process of directly differentiating the interpolations for displacements in the entire domain, to find the derivatives, such as strains and stresses. The present MLPG Galerkin Mixed Method is not plagued by the so-called LBB conditions, which are common in the Galerkin Mixed Finite Element Method. Numerical examples are included to demonstrate the advantages of the present method: i) the truly meshless implementation; ii) the simplicity of the mixed approach wherein lower-order polynomial basis and smaller support sizes can be used; and iii) higher accuracies and computational efficiencies, and iv) no LBB conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)

A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches

(2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Abstract The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using Moving Least Squares (MLS) interpolants. It is, however, computationally expensive for some problems. A coupled MLPG/Finite Element ...

متن کامل

Axial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method

In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...

متن کامل

A Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids

(2001) A Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids. Abstract The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using Moving Least Squares (MLS) interpolants and local weak forms. In this paper, a MLPG formulation is proposed for free and forced vibration analyses....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011